
 

   
The error-detection calculation used by IP and TCP is based on ones-complement addition.1 This 

concept is explained first, followed by a definition of the error-detection calculation.  

Ones complement addition 

Ones-complement addition is a calculation performed on binary integers. Before defining the 

addition algorithm, we first look at the way in which integers may be represented in binary 

form.   There are several alternative conventions used to represent negative as well as positive 

integers, all of which involve treating the most significant (leftmost) bit in the word as a sign 

bit.  

If the sign bit is 0, the number is positive; if the sign bit is 1, the number is negative.  

 The simplest form of representation that employs a sign bit is the sign-magnitude 

representation. In an n-bit word, the rightmost n – 1 bits hold the magnitude of the integer.  

  

  +18 =  00010010  
  –18 =  10010010  (sign magnitude)  

  

So, an 8-bit word can represent values in the range –127 to +127.  

 With sign-magnitude representation, there are two representations for zero:  

  

  +010 =  00000000  

  –010 =  10000000  (sign magnitude)  

  

This is inconvenient, because it is slightly more difficult to test for 0 (an operation performed 

frequently on computers) than if there were a single representation.  

 Another drawback to sign-magnitude representation is that addition and subtraction require a 

consideration of both the signs of the numbers and their relative magnitudes to carry out the 

required operation.  

Like sign magnitude, ones-complement representation uses the most significant bit as a sign 

bit, making it easy to test whether an integer is positive or negative. It differs from the  

 
 



P-2  

Sign magnitude representation in the way that the other bits are interpreted, which leads to 

simpler algorithms for addition and subtraction.  

 We need to distinguish between an operation and a representation. To perform the ones 

complement operation on a set of binary digits, replace 0 digits with 1 digits and 1 digits with 0 

digits.  

  

X =  01010001  ones-complement of X =  10101110  
Y =  10101110  ones-complement of Y =  01010001  

  

Note that the ones-complement of the ones-complement of a number is the original number.  

 The ones-complement representation of binary integers is defined as followed. Positive 

integers are represented in the same way as in sign-magnitude representation. A negative 

integer is represented by the ones-complement of the positive integer with the same 

magnitude.  

  

  +18 =  00010010  
 –18 = ones-complement of +18 =  11101101  

  

Note that because all positive integers in this representation have the left-most bit equal to 0, 

all negative integers necessarily have the leftmost bit equal to 1. Thus the leftmost bit 

continues to function as a sign bit. Table P.1 compares the sign-magnitude and ones 

complement representations for 4-bit integers.  

 In ordinary arithmetic, the negative of the negative of a number gives you back that number. 

This is also true in ones-complement arithmetic.  

  

  –18 =  11101101  
 +18 = ones-complement of –18 =  00010010  

  
As with sign-magnitude, ones-complement has two representations of zero:  

  



P-3  

  +010 =  00000000  

  –010 =  11111111  (ones-complement)  

  

  

Table P.1  Alternative Representations for 4-Bit Integers  
  

Decimal 
Representation  

Sign-Magnitude 
Representation  

Ones Complement 
Representation  

+7  0111  0111  

+6  0110  0110  

+5  0101  0101  

+4  0100  0100  

+3  0011  0011  

+2  0010  0010  

+1  0001  0001  

+0  0000  0000  

–0  1000  1111  

–1  1001  1110  

–2  1010  1101  

–3  1011  1100  

–4  1100  1011  

–5  1101  1010  

–6  1110  1001  

–7  1111  1000  

  

 We can now turn to a consideration of ones-complement addition. It should be intuitively 

obvious that the simplest implementation of addition for signed binary integers is one in which 



P-4  

the numbers can be treated as unsigned integers for purposes of addition. This approach does 

not work for the sign-magnitude representation. For example, these are clearly incorrect:  

   0011 = +3  
 + 1011 = –3  
   1110 = –6 (sign-magnitude)  

   0001 = +1  
 + 1110 = –6  
   1111 = –7 (sign-magnitude)  

  

For sign-magnitude numbers, correct addition and subtraction involve the comparison of signs 

and relative magnitudes of the two numbers.  

 With ones-complement addition, however, the straightforward approach, with a minor 

refinement, works:  

  
   0011 = +3  
 + 1100 = –3  
   1111 =  0 (ones-complement)  

   0001 = +1  
 + 1001 = –6  
   1010 = –5 (ones-complement)  

  

 This scheme will not always work unless an additional rule is added. If there is a carry out of 

the leftmost bit, add 1 to the sum. This is called an end-around carry.  

  
   1101 = –2  
 + 1011 = –4  
  11000  
      1  
   1001 = –6 (ones-complement)  

   0111 = +7  
 + 1100 = –3  
  10011  
      1  
   0100 = +4 (ones-complement)  

  
 

USE IN IP 

For the IP error detection operation, the entire header of an IP datagram is treated as a block of 

16-bit binary integers in ones-complement representation. To compute the checksum, the 

checksum field in the header is first set to all zeros. The checksum is then calculated by 

performing ones-complement addition of all the words in the header, and then taking the ones 

complement operation of the result. This result is placed in the checksum field.  

 To verify a checksum, the ones-complement sum is computed over the same set of octets, 

including the checksum field. If the result is all 1 bits (–0 in ones complement arithmetic), the 

check succeeds.  



P-5  

 The identical computation is performed for TCP. In this case, the computation is performed on 

the words comprising the segment header, the segment data, plus a pseudoheader that  

includes the following fields from the IP header: source address, destination address, TCP's 

protocol identifier, and the length of the TCP segment. If the segment contains an odd number 

of octets, the last octet is padded out on the right with zeros to form a 16-bit word. As with the 

IP algorithm, the checksum field is set to zero for the calculation.  

 We elaborate on an example in RFC 1071 (Computing the Internet Checksum, September 

1988). Consider a header that consists of 10 octets, with the checksum in the last two octets 

(this does not correspond to any actual header format) with the following content (in 

hexadecimal):  

  

00 01 F2 03 F4 F5 F6 F7 00 00  

  

Note that the checksum field is set to zero.  

  
  
Partial sum  

 0001  
 F203  
 F204  

  
Partial sum  

 F204  
 F4F5  
1E6F9  

  
Carry  

 E6F9  
    1  
 E6FA  

  
Partial sum  

  E6FA  

F6F7  

1DDF1  

 

  
Carry  

 DDF1  
    1  
 DDF2  

Ones complement of result   220D  
  

 So the transmitted packet is:  



P-6  

  

00 01 F2 03 F4 F5 F6 F7 22 0D  

  
 To verify the checksum:  

  
  
Partial sum  

 0001  
 F203  
 F204  

  
Partial sum  

 F204  
 F4F5  
1E6F9  

  
Carry  

 E6F9  
    1  
 E6FA  

  
Partial sum  

 E6FA  

F6F7  

1DDF1  
  
Carry  

 DDF1  
    1  
 DDF2  

Partial sum   DDF2  
 220D  
 FFFF  

  

  


